Crossed modules, homotopy 2-types, knotted surfaces and welded knots

Topology Seminar (Lille).

2nd April 2021

João Faria Martins (University of Leeds)

LEVERHULME TRUST _____

Partially funded by the Leverhulme Trust research project grant: RPG-2018-029: "Emergent Physics From Lattice Models of Higher Gauge Theory" Thanks due to Tim Porter, Paul Martin, Alex Bullivant, Celeste Damiani, Gustavo Granja, Louis Kauffman.

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- S. J. Lomonaco: The homotopy groups of knots. I: How to compute the algebraic 2-type. Pac. J. Math. 95, 349–390 (1981).
- A. I. Suciu: Infinitely many ribbon knots with the same fundamental group. Math. Proc. Camb. Philos. Soc. 98, 481–492 (1985).
- S. P. Plotnick and A. I. Suciu: k-invariants of knotted 2-spheres. Comment. Math. Helv. 60, 54–84 (1985).

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- JFM.: The Fundamental Crossed Module of the Complement of a Knotted Surface. Transactions of the American Mathematical Society. 361 (2009), 4593-4630.
- JFM, Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Compositio Mathematica. Volume 144, Issue 04, July 2008.
- Bullivant A, Martin P, and JFM: Representations of the Loop Braid Group and Aharonov-Bohm like effects in discrete (3+1)-dimensional higher gauge theory. Advances in Theoretical and Mathematical Physics Volume 23 (2019).
- Damiani C, JFM, Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- ▶ J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)

 J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)

 J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

- R. Brown, P. Higgins, R Sivera: Nonabelian algebraic topology. Filtered spaces, crossed complexes, cubical homotopy groupoids. European Mathematical Society (2011)
- Brown, R.; Huebschmann, Johannes Identities among relations. Low-dimensional topology, PLMS (1982).
- H. J. Baues: Combinatorial homotopy and 4-dimensional complexes. Berlin etc.: Walter de Gruyter (1991)
- H. J. Baues: Algebraic homotopy. Cambridge etc.: Cambridge University Press (1989)
- J. H. C. Whitehead: Combinatorial homotopy. I. and II. Bull. Am. Math. Soc. 55. (1949)
- J. C. Baez and A. D. Lauda: Higher-dimensional algebra. V: 2-Groups. Theory Appl. Categ. 12, 423–491 (2004).

Let K be a (one-component) piecewise linear / smooth knot in S^3

- Papakyriakopoulos theorem: S³ \ K is an aspherical space.
 Asphericity means that: π_i(S³ \ K) = 0, if i ≥ 2.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+.$

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let {*n*-**types**} be the category with objects the *n*-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- Papakyriakopoulos theorem: S³ \ K is an aspherical space.
 Asphericity means that: π_i(S³ \ K) = 0, if i ≥ 2.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+.$

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^{\circ} \setminus K) = 0$, if $i \ge 2$
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+.$

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a *non-splittable* link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+.$

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n-type) Let $n\in\mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n-types\}$ be the category with objects the *n*-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$

An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally $S^3 \setminus L$ is aspherical if $L \subset S^3$ is a *non-splittable* link. E.g.

Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

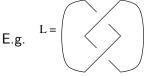
An *n*-type is a path-connected pointed space X = (X, *) such that:

- 1. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

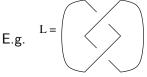
An *n*-type is a path-connected pointed space X = (X, *) such that:

- L. X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the *n*-types. Given two *n* types X and Y

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n-type* is a path-connected pointed space X = (X, *) such that:

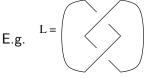
- X is homeomorphic to a CW-complex, with * being a 0-cell.
 - (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let {*n*-**types**} be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n-type* is a path-connected pointed space X = (X, *) such that:

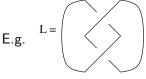
- X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
- 2. $\pi_i(X) = 0$, if i > n.

Let $\{n$ -types $\}$ be the category with objects the n-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

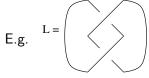
 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let {*n*-types} be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

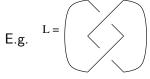
 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let {*n*-**types**} be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

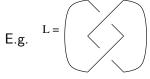
 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 x = (X) = 0, if i > 0

Let {*n*-**types**} be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 a. (X) = 0 if i > n

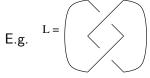
2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n-types\}$ be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)

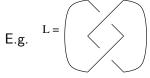
2.
$$\pi_i(X) = 0$$
, if $i > n$.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given two *n*-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

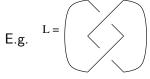
 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let $\{n$ -types $\}$ be the category with objects the *n*-types.

Given two n-types X and Y,

Let K be a (one-component) piecewise linear / smooth knot in S^3

- ▶ Papakyriakopoulos theorem: $S^3 \setminus K$ is an aspherical space.
- Asphericity means that: $\pi_i(S^3 \setminus K) = 0$, if $i \ge 2$.
- More generally S³ \ L is aspherical if L ⊂ S³ is a non-splittable link.



Definition: (n-type) Let $n \in \mathbb{Z}_0^+$.

An *n*-type is a path-connected pointed space X = (X, *) such that:

 X is homeomorphic to a CW-complex, with * being a 0-cell. (Frequenly omitted in model categories literature.)
 π_i(X) = 0, if i > n.

Let {*n*-**types**} be the category with objects the *n*-types.

Given two n-types X and Y,

1-types and knot complements

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$. A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

$\pi_1: \ \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \ \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1 ext{-types}\} o \{ ext{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- Maps f, f': X → Y, of 1-types, are pointed homotopic iff induced maps f_{*}, f'_{*}: π₁(X) → π₁(Y) are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' : X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_* : \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem**: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic

iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: Theorem: The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1 : \ \{1\text{-types}\} \to \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f': X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_*: \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Also recall: Wirtinger presentation for $\pi_1(S^3 \setminus K)$.

A generator for each arc of projection. A relation for each crossing:

Therefore, complements of non-splittable links in S^3 are 1-types.

Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.

Therefore, complements of non-splittable links in S^3 are 1-types.

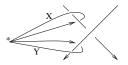
Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.



Therefore, complements of non-splittable links in S^3 are 1-types.

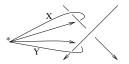
Well known theorem: The fundamental group functor

 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.



Therefore, complements of non-splittable links in S^3 are 1-types.

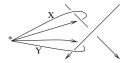
Well known theorem: The fundamental group functor

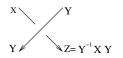
 $\pi_1: \{1\text{-types}\} \rightarrow \{\text{groups}\}$

is an equivalence of categories. This implies:

- 1. Two 1-types X and Y are homotopic iff $\pi_1(X) \cong \pi_1(Y)$.
- 2. Maps $f, f' \colon X \to Y$, of 1-types, are pointed homotopic iff induced maps $f_*, f'_* \colon \pi_1(X) \to \pi_1(Y)$ are equal.

In particular, combining with Papakyriakopoulos theorem, we have: **Theorem:** The homotopy type of the complement of a non-splittable link $L \subset S^3$ is classified by $\pi_1(S^3 \setminus L)$.





Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$

- Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical.
- Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.
- We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.
- Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.
- This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.
- I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 .

(Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$ Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 . (Any genus, any number of components, possibly non-orientable.) Fact: $S^4 \setminus \Sigma$ need not be aspherical. Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy. We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Beyond 1-types: complements of knotted surfaces $\Sigma \subset S^4$

- Let $\Sigma \subset S^4$ be a closed surface smoothly embedded in S^4 .
- (Any genus, any number of components, possibly non-orientable.)
- Fact: $S^4 \setminus \Sigma$ need not be aspherical.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4 \setminus \Sigma$ up to homotopy.

- Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.
- This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.
- I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at *the homotopy 2-type* $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order ≥ 3 . Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4 \setminus \Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later. We will see 2-groups as being represented by crossed modules.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups. ... To be explained later. We will see 2-groups as being represented by crossed modules.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Also $\pi_1(S^4 \setminus \Sigma)$ does not classify $S^4 \setminus \Sigma$ up to homotopy.

We need to look at 'higher order' homotopy type information in order to classify $S^4\setminus\Sigma$ up to homotopy.

Let us look at the homotopy 2-type $\mathcal{P}_2(S^4 \setminus \Sigma)$ of $S^4 \setminus \Sigma$.

This topological space $\mathcal{P}_2(S^4 \setminus \Sigma)$ is obtained from $S^4 \setminus \Sigma$ by functorially killing all homotopy groups π_i , for $i \geq 3$.

I.e. we throw away homotopy theoretical information of order \geq 3. Hence $\mathcal{P}_2(S^4\setminus\Sigma)$ is a 2-type.

Theorem

Category of 2-types is equivalent to homotopy category of 2-groups.

... To be explained later.

Crossed modules

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- ▶ A left action ▷ of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Example

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (Peiffer equations) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → G, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- ▶ A left action ▷ of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

 ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:

 ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the "base-group". E is the "principal group".)
- A left action \triangleright of G on E, by automorphisms,
- such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → G, ▷).
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

- A group map (i.e. a homomorphism) ∂: E → G. (G is called the *"base-group"*. E is the *"principal group"*.)
 A left action p of G on E, by automorphisms.
- such that the following conditions (*Peiffer equations*) hold:

 ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

• A group map (i.e. a homomorphism) $\partial \colon E \to G$.

(G is called the *"base-group"*. E is the *"principal group"*.)

A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

 ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → C, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → 1_G) G, ▷).
- ▶ ∂ : $A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (Peiffer equations) hold:

1. $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_C/→ 1_C) G, ▷).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

- such that the following conditions (Peiffer equations) hold:
 - 1. $\partial(g \triangleright e) = g \partial(e)g^{-1}$, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1_G → G, ▷).
- ▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;

2. $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

- ► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1_C/→ 1_C).
- ▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:

1.
$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G, e \in E$;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A → 1G) G, ▷).
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► G a group; A an abelian group. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module $G = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$
- ▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► G a group; A an <u>abelian group</u>. Consider a left-action ▷ of G on A, by automorphisms. We have a crossed module G = (A ^{a∈A→1}_G→ G, ▷).

▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an abelian group.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).

▶ ∂ : $A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial : A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► *G* a group; *A* an abelian group.

Consider a left-action \triangleright of G on A, by automorphisms. We have a crossed module $G = (A \xrightarrow{a \in A \longmapsto 1_G} G \triangleright)$

▶ $\partial: A \to G$, map of <u>abelian groups</u>. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1c → C, ▷).

▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

G a group; A an <u>abelian group</u>.
 Consider a left-action ▷ of G on A, by automorphisms.
 We have a crossed module G = (A → 1G G, ▷).

▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

• *G* a group; *A* an abelian group. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$

▶ $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to G, \triangleright_{trivial})$ is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ▷ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

Example

► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$

∂: A → G, map of abelian groups. Action g ▷_{trivial} a = a. Then G = (∂: A → G, ▷_{trivial}) is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \mapsto 1_G} G, \triangleright).$
- ∂: A → G, map of abelian groups. Action g ▷_{trivial} a = a. Then G = (∂: A → G, ▷_{trivial}) is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \longmapsto 1_G} G, \triangleright)$.
- → ∂: A → G, map of abelian groups. Action g ▷_{trivial} a = a. Then G = (∂: A → G, ▷_{trivial}) is a crossed module.

Definition (Crossed module)

A crossed module $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ is given by:

A group map (i.e. a homomorphism) ∂: E → G.
 (G is called the "base-group". E is the "principal group".)

• A left action \triangleright of G on E, by automorphisms,

such that the following conditions (*Peiffer equations*) hold:
 1. ∂(g ⊳ e) = g∂(e)g⁻¹, where g ∈ G, e ∈ E;

2.
$$\partial(e) \triangleright f = efe^{-1}$$
, where $e, f \in E$.

- ► *G* a group; *A* an <u>abelian group</u>. Consider a left-action \triangleright of *G* on *A*, by automorphisms. We have a crossed module $\mathcal{G} = (A \xrightarrow{a \in A \longmapsto 1_G} G, \triangleright).$
- ► $\partial: A \to G$, map of abelian groups. Action $g \triangleright_{trivial} a = a$. Then $\mathcal{G} = (\partial: A \to \overline{G}, \triangleright_{trivial})$ is a crossed module.

A group map $\partial: E \to G$. A left action \triangleright of G on E. With

 $\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$ $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

- Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.
- ► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

 $\partial(g \triangleright e) = g\partial(e)g^{-1}$, where $g \in G, e \in E$; $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

$$\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

 $\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$ $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

► Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: $\Pi_2(M, N, *) = (\partial : \pi_2(M, N, *) \rightarrow \pi_1(N, *), \triangleright).$

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

▶ Let *H* be any group. $G = \operatorname{Aut}(H)$. $\partial = \operatorname{Ad}: H \to \operatorname{Aut}(H)$. (Ad: $H \to \operatorname{Aut}(H)$, ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e) g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ∞).

$$\partial(g \triangleright e) = g\partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ·)

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

Let (M, N, *) be a pair of spaces. We have a crossed module: Π₂(M, N, *) = (∂: π₂(M, N, *) → π₁(N, *), ▷).

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{td}} \mathbb{Z}, \triangleright_{trivial}).$$

$$\partial(g \triangleright e) = g \partial(e)g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$

More examples of crossed modules $\mathcal{G} = (\partial \colon E \to G, \triangleright)$

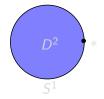
A group map $\partial \colon E \to G$. A left action \triangleright of G on E. With

$$\partial(g \triangleright e) = g \partial(e)g^{-1}, \text{ where } g \in G, e \in E;$$

 $\partial(e) \triangleright f = efe^{-1}, \text{ where } e, f \in E.$

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

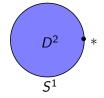
$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$



$$\partial(g \triangleright e) = g \partial(e) g^{-1}$$
, where $g \in G, e \in E$;
 $\partial(e) \triangleright f = efe^{-1}$, where $e, f \in E$.

Let H be any group. G = Aut(H). ∂ = Ad: H → Aut(H). (Ad: H → Aut(H), ▷) is a crossed module.

$$\blacktriangleright \ \Pi_2(D^2, S^1, *) = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial}).$$



Let V be a set, G a group. Consider a set map $\partial_0: V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle\partial_0\colon V\to G\rangle = \big(\partial\colon \mathcal{F}(V\xrightarrow{\partial_0} G)\longrightarrow G,\triangleright\big).$ t adjoint to $(\partial\colon E\to G,\triangleright)\mapsto (\partial\colon U(E)\to G).$

Let V be a set, G a group. Consider a set map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle\partial_0\colon V\to G\rangle = \left(\partial\colon \mathcal{F}(V\xrightarrow{\nu_0}G)\longrightarrow G,\triangleright\right).$ eft adjoint to $(\partial\colon E\to G,\triangleright)\mapsto (\partial\colon U(E)\to G).$

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - - E \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$

Let V be a set, G a group. Consider a set map $\partial_0 : V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle \partial_0 \colon V \to G \rangle = (\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright).$ Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - - E \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle\partial_0\colon V o G
angle = (\partial\colon \mathcal{F}(V\xrightarrow{o_0}G)\longrightarrow G,\triangleright).$ Left adjoint to $(\partial\colon E o G,\triangleright)\mapsto (\partial\colon U(E)\to G).$

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \stackrel{\psi}{\longrightarrow} - - - - E \\ & & & & \\ & & & \\ & & & \\ & & & \\ G \xrightarrow{} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle\partial_0\colon V o G
angle = (\partial\colon \mathcal{F}(V\stackrel{u_0}{\to} G)\longrightarrow G, \triangleright).$ eft adjoint to $(\partial\colon E\to G, \triangleright)\mapsto (\partial\colon U(E)\to G).$

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \stackrel{\psi}{\longrightarrow} - - - - E \\ & & & & \\ & & & \\ & & & \\ & & & \\ G \xrightarrow{} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

 $\mathcal{U}\langle\partial_0\colon V\to G\rangle = \left(\partial\colon \mathcal{F}(V\xrightarrow{\partial_0}G)\longrightarrow G,\triangleright\right)$ adjoint to $(\partial\colon E\to G,\triangleright)\mapsto (\partial\colon U(E)\to G)$

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \stackrel{\psi}{\longrightarrow} - - - E \\ & & & & \\ & & & \\ & & & \\ & & & \\ G \xrightarrow{} & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = (\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright)$$

Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$

 $\begin{array}{ccc} \mathcal{F}(V \xrightarrow{b_0} G) - \xrightarrow{\phi} - - - - E \\ & & \\ \partial & & \\ G \xrightarrow{\phi} & H \end{array}$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \left(\partial \colon \mathcal{F}(V \xrightarrow{O_0} G) \longrightarrow G, \triangleright \right).$$

Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G)$.

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \left(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \right)$$

Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G)$.

 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - \cdots - E \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \left(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \right)$$

Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

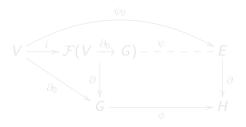
Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$



Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \left(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \right).$$

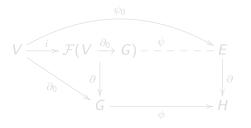
Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$



Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$

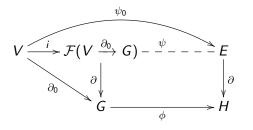


 $\begin{array}{c|c} \mathcal{F}(V \xrightarrow{\partial_0} G) - \xrightarrow{\psi} - - - - E \\ & & \downarrow \\ & & \downarrow \\ G \xrightarrow{\phi} H \end{array}$

Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

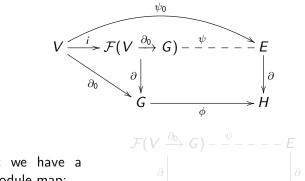
Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$



Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

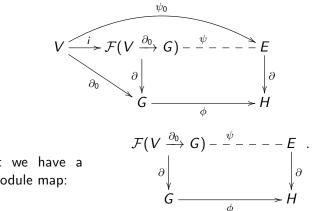
Left adjoint to $(\partial \colon E \to G, \triangleright) \mapsto (\partial \colon U(E) \to G).$



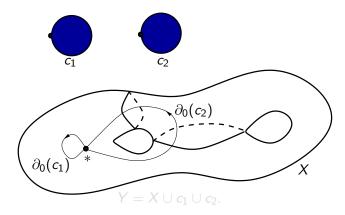
Let V be a set, G a group. Consider a set map $\partial_0 \colon V \to G$. We can define the "free crossed module on ∂_0 ", denoted

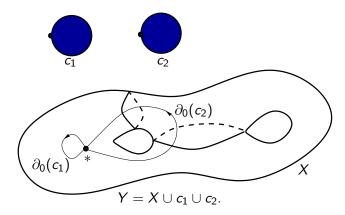
$$\mathcal{U}\langle \partial_0 \colon V \to G \rangle = \big(\partial \colon \mathcal{F}(V \xrightarrow{\partial_0} G) \longrightarrow G, \triangleright \big).$$

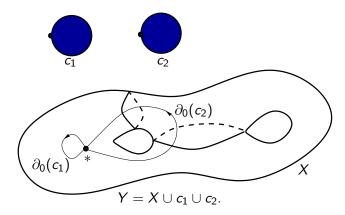
Left adjoint to $(\partial : E \to G, \triangleright) \mapsto (\partial : U(E) \to G)$.

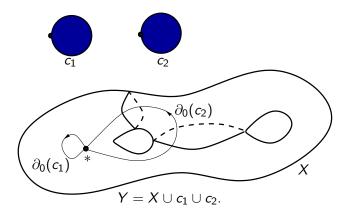


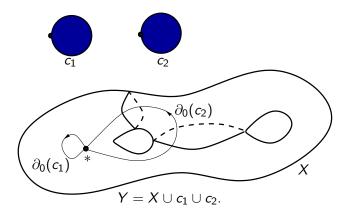
$Y = X \cup c_1 \cup c_2.$

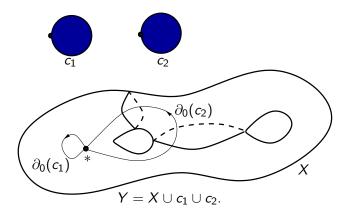












A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} / \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}:

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} / \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$.

Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} $/\cong$. Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem Ho({Crossed Modules}) is equivalent to {2-types}.

```
l.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem *Ho*({**Crossed Modules**}) is equivalent to {**2-types**}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} $/\cong$. Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({Crossed Modules}) is equivalent to {2-types}.

```
I.e.:
the category {Cof-Crossed Modules}/ ≅
is equivalent to category of 2-types.
```

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**} $/\cong$. Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; F a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({Crossed Modules}) is equivalent to {2-types}.

I.e.:

the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

I.e.:

the category {Cof-Crossed Modules}/ \cong

is equivalent to category of 2-types.

A crossed module $\mathcal{G} = (E \xrightarrow{\partial} G)$ contains a short complex $E \to G$. Given \mathcal{G} and $\mathcal{G}' = (E' \to G')$, \exists notion of homotopy of maps $\mathcal{G} \to \mathcal{G}'$. Homotopies are built on group derivations $s \colon G \to E'$.

Fact: We have category {**Cof-Crossed Modules**}/ \cong . Objects are crossed modules $\mathcal{G} = (\partial : E \to F)$; *F* a free group. Maps $\mathcal{G} \to \mathcal{G}'$ are homotopy classes of maps $\mathcal{G} \to \mathcal{G}'$.

Theorem

Ho({**Crossed Modules**}) *is equivalent to* {**2-types**}.

I.e.:

```
the category {Cof-Crossed Modules}/ \cong is equivalent to category of 2-types.
```

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 ${Cof-Crossed Modules}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{\text{Crossed Modules}\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\} / \cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright)$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{\text{Crossed Modules}\}) \cong \{2\text{-types}\}$. I.e.

 $\{Cof-Crossed Modules\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof-Crossed Modules\}/\cong \text{ is equivalent to category of 2-types.}$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright)$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

The fundamental crossed module $\Pi_2(X, X^1)$ Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e. $\{Cof-Crossed Modules\}/\cong \text{ is equivalent to category of 2-types.}$ This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

$\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton. We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $\mathit{Ho}(\{Crossed\ Modules\})\cong\{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

 $\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$

▶ Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition. Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

 $\Pi_2(X, X^1) = (\partial \colon \pi_2(X, X^1) \to \pi_1(X^1), \triangleright).$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

 Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

▶ Let {CW-complexes}/ ≅ be the category with

- objects reduced CW-complexes, with chosen CW-decomposition. Maps $X \to Y$ are pointed homotopy classes of pointed maps. We have a functor
- $\Pi_2: \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$
- Theorem (Whitehead / MacLane 1950 PNAS)
 - 1. When restricted to 2-types, Π_2 is an equivalence of categories.
 - 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \{ \mathsf{CW}\text{-}\mathsf{complexes} \} \ / \cong \ \longrightarrow \{ \mathsf{Cof}\text{-}\mathsf{Crossed} \ \mathsf{Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} \ / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps.

 $\Pi_2: \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\mbox{Cof-Crossed Modules}\}/\cong\mbox{is equivalent to category of 2-types}.$

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{\text{CW-complexes}\} \ / \cong \ \longrightarrow \{\text{Cof-Crossed Modules}\} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1),
ho).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial), k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), riangle).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1),
ho).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

- $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$
- Theorem (Whitehead / MacLane 1950 PNAS)
 - 1. When restricted to 2-types, Π_2 is an equivalence of categories.
 - Π₂(X, X¹) faithfully represents the homotopy 2-type of X. Hence π₂(X) = ker(∂), π₁(X) = coker(∂), k(X) = k(Π₂(X)).

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \pi_1(X) = \operatorname{coker}(\partial)$.

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1) = (\partial \colon \pi_2(X,X^1) \to \pi_1(X^1), \triangleright).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1), arrow).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Theorem $Ho(\{Crossed Modules\}) \cong \{2\text{-types}\}$. I.e.

 $\{\text{Cof-Crossed Modules}\}/\cong$ is equivalent to category of 2-types.

This equivalence of categories can be made more concrete.

Given a reduced CW-complex X, let X¹ be its one-skeleton.
 We have a crossed module:

$$\Pi_2(X,X^1)=(\partial\colon \pi_2(X,X^1) o\pi_1(X^1),
ho).$$

Let {CW-complexes}/ ≅ be the category with objects reduced CW-complexes, with chosen CW-decomposition.
 Maps X → Y are pointed homotopy classes of pointed maps. We have a functor

 $\Pi_2 \colon \ \{ \textbf{CW-complexes} \} \ / \cong \ \longrightarrow \{ \textbf{Cof-Crossed Modules} \} / \cong.$

- 1. When restricted to 2-types, Π_2 is an equivalence of categories.
- 2. $\Pi_2(X, X^1)$ faithfully represents the homotopy 2-type of X. Hence $\pi_2(X) = \ker(\partial), \ \pi_1(X) = \operatorname{coker}(\partial), \ k(X) = k(\Pi_2(X)).$

Presentation of $\Pi_2(X, X^1)$ by generators and relations

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹))
 is obtained from the free crossed module Π₂(X², X¹)
 by imposing a crossed module 2-relation for each 3-cell.

 I₂(X, X¹) = U \langle {2-cells} ∂/∂ π₁(X¹) | ∂(c) = 1 for each c ∈ {3-cells} \langle
 Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $I_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\Pi_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$

by generators and relations. (In the world of crossed modules.)

- π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))
- is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $I_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\Pi_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Presentation of $\Pi_2(X, X^1)$ by generators and relations Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of *X*. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\Pi_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Let X be a reduced CW-complex. X^i union of cells of index $\leq i$. Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\Pi_2(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$ Also Π_2 satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$ is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹))
 is obtained from the free crossed module Π₂(X², X¹)
 by imposing a crossed module 2-relation for each 3-cell.

 I₂(X, X¹) = U \langle {2-cells} ∂/→ π₁(X¹) | ∂(c) = 1 for each c ∈ {3-cells} \langle
 Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

π₁(X¹) = F(1-cells): free group on the set of 1-cells of X.
 Π₂(X², X¹) = (∂: π₂(X², X¹) → π₁(X¹))

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

 Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹)) is obtained from the free crossed module Π₂(X², X¹) by imposing a crossed module 2-relation for each 3-cell.
 2(X, X¹) = U ({2-cells} ∂ π₁(X¹) | ∂(c) = 1 for each c ∈ {3-cells}) Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\mu(X, X^1) = \mathcal{U} \left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell. $\mu(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$

is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

 Π₂(X, X¹) = (∂: π₂(X³, X¹) → π₁(X¹)) is obtained from the free crossed module Π₂(X², X¹) by imposing a crossed module 2-relation for each 3-cell.
 (X, X¹) = U ({2-cells} → π₁(X¹) | ∂(c) = 1 for each c ∈ {3-cells}) Also Π₂ satisfies a van Kampen type property. (Brown-Higgins).

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X,X^1) = (\pi_2(X,X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial : \pi_2(X^2, X^1) \to \pi_1(X^1))$

is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

$$\Pi_2(X,X^1) = \mathcal{U}\left<\{\text{2-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{\text{3-cells}\}\right>.$$

Procedure to describe a presentation of the crossed module:

$$\Pi_2(X, X^1) = (\pi_2(X, X^1) \to \pi_1(X^1))$$

by generators and relations. (In the world of crossed modules.)

1. $\pi_1(X^1) = \mathcal{F}(1\text{-cells})$: free group on the set of 1-cells of X. 2. $\Pi_2(X^2, X^1) = (\partial \colon \pi_2(X^2, X^1) \to \pi_1(X^1))$

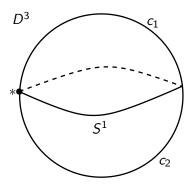
is the free crossed module on the attaching maps of the 2-cells.

$$\Pi_2(X^2, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \right\rangle.$$

3. $\Pi_2(X, X^1) = (\partial : \pi_2(X^3, X^1) \to \pi_1(X^1))$ is obtained from the free crossed module $\Pi_2(X^2, X^1)$ by imposing a crossed module 2-relation for each 3-cell.

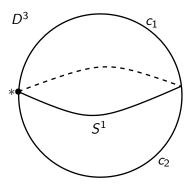
$$\Pi_2(X, X^1) = \mathcal{U}\left\langle \{2\text{-cells}\} \xrightarrow{\partial} \pi_1(X^1) \mid \partial(c) = 1 \text{ for each } c \in \{3\text{-cells}\} \right\rangle.$$

 $\Pi_{2}(S^{2}, S^{1}) = \mathcal{U}\left\langle \left\{ c_{1}, c_{2} \right\} \xrightarrow{c_{1} \mapsto 1}{c_{2} \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a, b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$ $\Pi_{2}(D^{3}, S^{1}) = \mathcal{U}\left\langle \left\{ c_{1}, c_{2} \right\} \xrightarrow{c_{1} \mapsto 1}{c_{2} \mapsto 1} (\mathbb{Z}, +) \right\} = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a, b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$



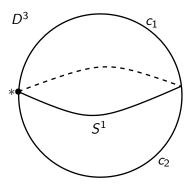
$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

 $\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \\ c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial})$



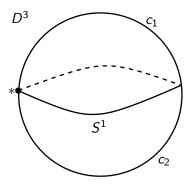
$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

 $\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \left\{ c_1, c_2 \right\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\text{id}} \mathbb{Z}, \triangleright_{trivial})$



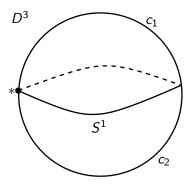
$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

 $\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\text{id}} \mathbb{Z}, \triangleright_{trivial})$



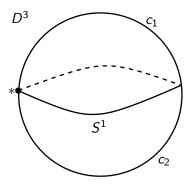
$$\Pi_2(S^2, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

 $\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial})$



$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z},+) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\text{id}} \mathbb{Z}, \triangleright_{trivial})$$



$$\Pi_2(S^2,S^1) = \mathcal{U}\left\langle \{c_1,c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z},+) \right\rangle = (\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{(a,b) \mapsto a+b} \mathbb{Z}, \triangleright_{trivial})$$

$$\Pi_2(D^3, S^1) = \mathcal{U}\left\langle \{c_1, c_2\} \xrightarrow{c_1 \mapsto 1 \atop c_2 \mapsto 1} (\mathbb{Z}, +) \mid c_1 = c_2 \right\rangle = (\mathbb{Z} \xrightarrow{\mathrm{id}} \mathbb{Z}, \triangleright_{trivial})$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes.

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) = \Pi_2(Y,Y^1)$$

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X,X^1) \lor = \Pi_2(Y,Y^1)$$

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_{0}(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_{1}(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1) = \Pi_2(Y,Y^1)$

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1)$

Proposition Let $\mathcal{G} = (\partial \colon E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of XLet X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that: $\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}.$

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, *I_g(X)* is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, *I_g(X)* is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, *I_g(X)* is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

 $I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$

does not depend on the chosen CW-decomposition of X. Moreover, $I_G(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

 $\Pi_2(X,X^1) \vee \Pi_2(D^2,S^1)^{\vee m} = \Pi_2(Y,Y^1) \vee \Pi_2(D^2,S^1)^{\vee n}.$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $l_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$
s the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $l_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_{0}(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_{1}(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

s the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$l_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\text{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\#\pi_1(\text{TOP}(X, B_{\mathcal{G}}), f)}$$

the classifying space of \mathcal{G} . $\text{TOP}(X, B_{\mathcal{G}})$ function sp

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, \mathcal{B}_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, \mathcal{B}_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . TOP $(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space.

Up to homotopy $\Pi_2(X, X^1)$ doesn't depend on CW-decomposition of X Let X and Y be homotopic CW-complexes. $\exists m, n \in \mathbb{Z}_0^+$ such that:

$$\Pi_2(X, X^1) \vee \Pi_2(D^2, S^1)^{\vee m} = \Pi_2(Y, Y^1) \vee \Pi_2(D^2, S^1)^{\vee n}$$

We are using "=" to say "isomorphic'.

Proposition Let $\mathcal{G} = (\partial : E \to G, \triangleright)$ be a finite crossed module. Let X be a finite reduced CW-complex. The quantity:

$$I_{\mathcal{G}}(X) = \frac{1}{(\#E)^{\text{number of 1-cells of } X}} \# \hom(\Pi_2(X, X^1), \mathcal{G}),$$

does not depend on the chosen CW-decomposition of X. Moreover, $I_{\mathcal{G}}(X)$ is a homotopy invariant of X. Interpretation:

$$I_{\mathcal{G}}(X) = \sum_{f \in \pi_0(\operatorname{TOP}(X, B_{\mathcal{G}}))} \frac{1}{\# \pi_1(\operatorname{TOP}(X, B_{\mathcal{G}}), f)}$$

 $B_{\mathcal{G}}$ is the classifying space of \mathcal{G} . $\operatorname{TOP}(X, B_{\mathcal{G}})$ function space.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.) Suppose the projection on the *t*-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at *t*".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ . To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at *t*".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order. Let $\Sigma_t = \Sigma \cap (\mathbb{R}^3 \times \{t\})$, called the "still of Σ at t".

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

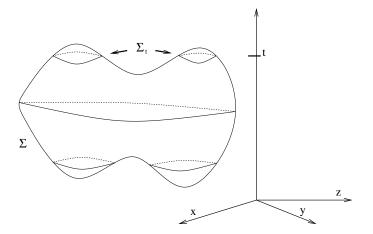
To simplify, suppose critical points appear in increasing order.

Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

To simplify, suppose critical points appear in increasing order.



Let $\Sigma \subset S^4 = \mathbb{R}^4 \cup \{\infty\}$ be a knotted surface.

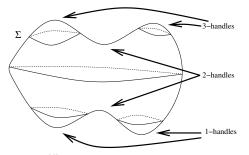
(Any genus, any number of components.)

Suppose the projection on the *t*-variable is a Morse function in Σ .

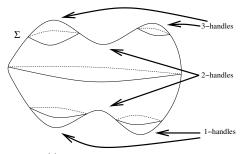
To simplify, suppose critical points appear in increasing order.



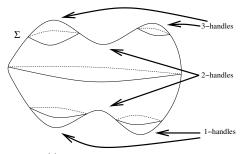
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ. (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



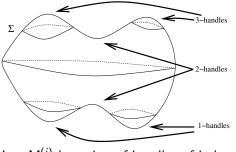
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ. (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ. (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



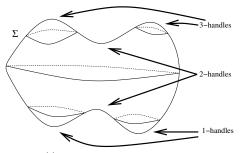
Let $M^{(i)}$ be union of handles of index $\leq i$.

• A minimal point in Σ yields a 1-handle of $S^4 \setminus \Sigma$.

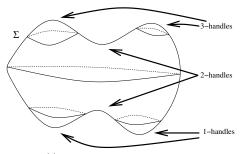
Hence a free generator of the group $\pi_1(M^{(1)})$.)

- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

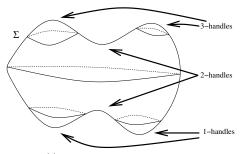
A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



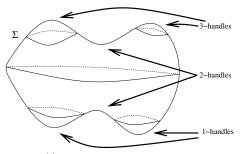
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ. (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
 A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾))
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of Σ .



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of $S^4 \setminus \Sigma$.
 - (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
 A maximal point in Σ yields a 3-handle of S⁴ \ Σ.
 - (Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)
- A presentation for $\Pi_2(M,M^{(1)})$ can be derived from a 'movie' of $\Sigma.$



- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ.
 (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)
- A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

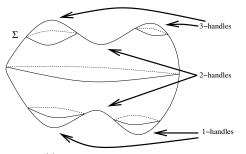


Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of $S^4 \setminus \Sigma$.

(Hence a 2-relation needs to be imposed on $\Pi_2(M^{(2)}, M^{(1)})$ in order to get to $\Pi_2(M, M^{(1)})$.)

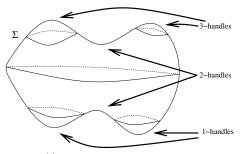
A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .



Let $M^{(i)}$ be union of handles of index $\leq i$.

- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

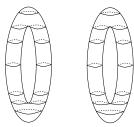
A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

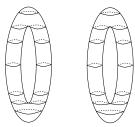


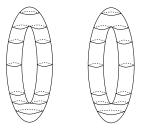
Let $M^{(i)}$ be union of handles of index $\leq i$.

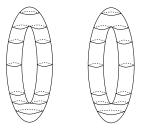
- A minimal point in Σ yields a 1-handle of S⁴ \ Σ.
 (Hence a free generator of the group π₁(M⁽¹⁾).)
- A saddle point in Σ yields a 2-handle of S⁴ \ Σ.
 (Hence a free crossed module generator of Π₂(M⁽²⁾, M⁽¹⁾).)
- A maximal point in Σ yields a 3-handle of S⁴ \ Σ. (Hence a 2-relation needs to be imposed on Π₂(M⁽²⁾, M⁽¹⁾) in order to get to Π₂(M, M⁽¹⁾).)

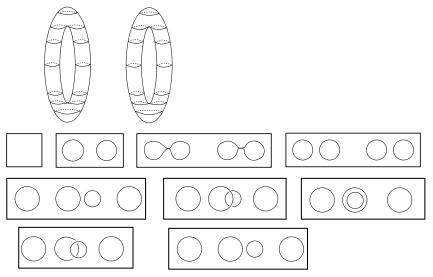
A presentation for $\Pi_2(M, M^{(1)})$ can be derived from a 'movie' of Σ .

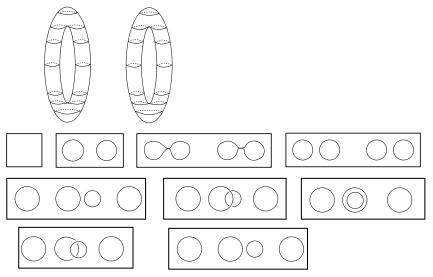


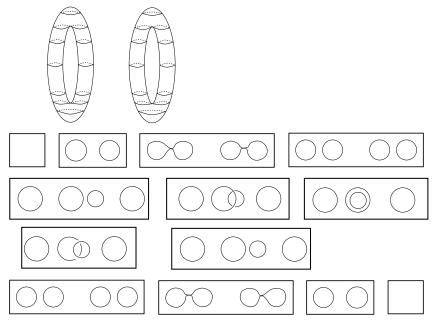












Free generators of $\pi_1(M^{(1)})$ at minimal points

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(1)}$ be union of handles of degree so r.

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in\pi_1(M^{(1)})$ can be defined as:

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Free generators of $\pi_1(M^{(1)})$ at minimal points Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X\in \pi_1(M^{(1)}).$ Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M.Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X \in \pi_1(M^{(1)})$ can be defined as:

Let $\Sigma \subset S^4$, oriented surface, Morse conditions as above. Let $M = S^4 \setminus \Sigma$. Let $M^{(i)}$ be union of handles of degree $\leq i$.

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

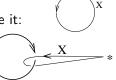
As the movie evolves, throughout an isotopy, we colour the link arcs of each still Σ_t by the generators of $\pi_1(M^{(1)})$ they represent. There are relations between generators at different times. For R2:

X

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

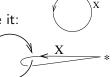
Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:



Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:



Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

e it: X

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

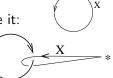
Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:

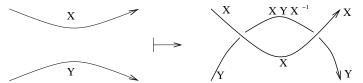
it: X

Locally, an oriented minimal point looks like:

A minimal point yields a 1-handle of M. Hence a free generator of $X \in \pi_1(M^{(1)})$. Denote it:

Concretely, $X\in \pi_1(M^{(1)})$ can be defined as:





Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

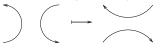
Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Free generators of $\Pi_2(M^{(2)}, M^{(1)})$ at saddle points Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e\in \pi_2(M^{(2)},M^{(1)}).$

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie:

This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of *M*.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made,

and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:



When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.

Locally, an (oriented) saddle point looks like:

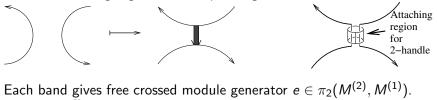
When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

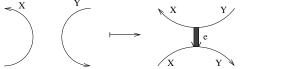
Each band gives free crossed module generator $e \in \pi_2(M^{(2)}, M^{(1)})$.



Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.

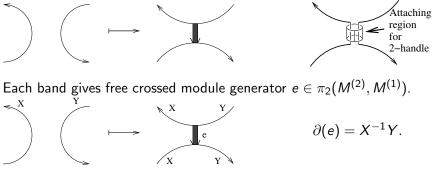




$$\partial(e) = X^{-1}Y.$$

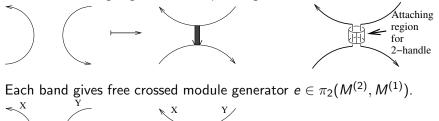
Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.



Locally, an (oriented) saddle point looks like:

When passing saddle point, add a 'band', kept throughout movie: This band will later bookkeep where the saddle point was made, and the attaching region of corresponding 2-handle of M.



$$\partial(e) = X^{-1}Y.$$

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

 $: \bigcirc \mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks like:

Locally, an oriented maximal point looks like:

 $\mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks lik

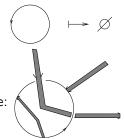
Locally, an oriented maximal point looks like:

 $\mapsto \emptyset$

Some bands will possibly be present. Before maximal point, configuration looks like:

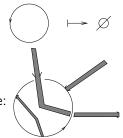
Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:



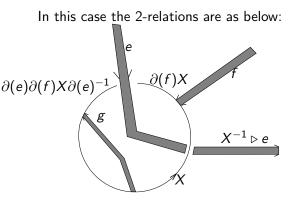
Locally, an oriented maximal point looks like:

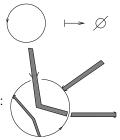
Some bands will possibly be present. Before maximal point, configuration looks like:



Locally, an oriented maximal point looks like:

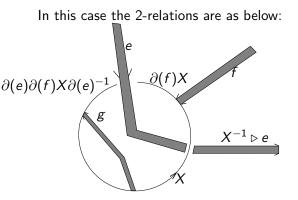
Some bands will possibly be present. Before maximal point, configuration looks like:

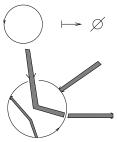




Locally, an oriented maximal point looks like:

Some bands will possibly be present. Before maximal point, configuration looks like:



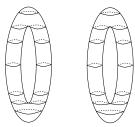


2-relation:

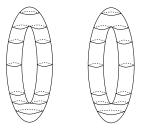
$$e \ f \ (X^{-1} \triangleright e^{-1}) = 1$$

A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori

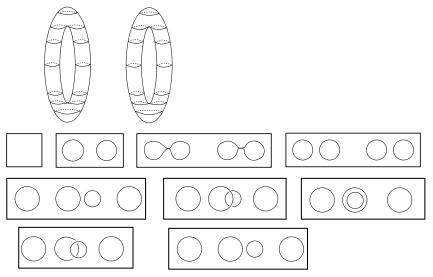
A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori



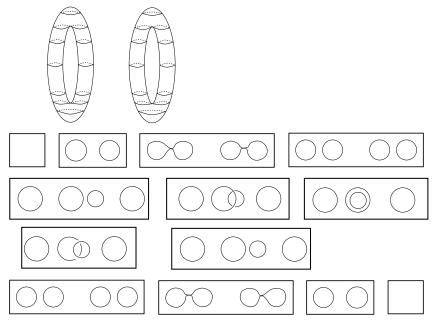
A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori



A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori



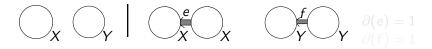
A movie for a knotted union $\boldsymbol{\Sigma}$ of two tori



 $\partial(e) = 1$ $\partial(f) = 1$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \ e^{-1} \left(X \triangleright f^{-1}\right) \ f &= 1\\ (X \triangleright f) f^{-1} &= 1. \end{aligned}$



 $X, Y \in \pi_1(M^{(1)});$

 $\partial(\mathbf{g}) = 1$ $\partial(h) = XYX^{-1}Y^{-1}$ $e e^{-1} (X \triangleright f^{-1}) f = 1$ $(X \triangleright f)f^{-1} = 1.$

 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{x}} e \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{y}} e \bigcirc_{\mathbf{y}} e$

 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{v}} e \\ X \bigcirc_{\mathbf{X}} f \bigcirc_{\mathbf{X}} f \bigcirc_{\mathbf{Y}} e \\ \partial(e) = 1 \\ \partial(f) = 1$

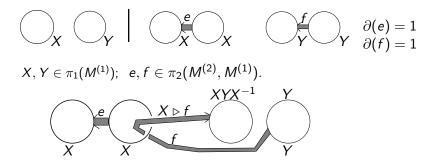
 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

 $\begin{aligned} \partial(g) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) f &= 1\\ (X \triangleright f)f^{-1} &= 1. \end{aligned}$

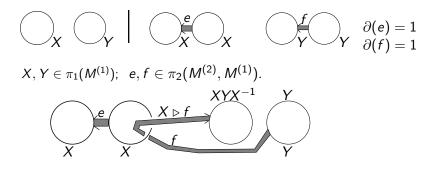
 $\bigcirc_{\mathbf{v}} \bigcirc_{\mathbf{v}} | \bigcirc_{\mathbf{v}} e \\ X \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{x}} f \bigcirc_{\mathbf{x}} e \\ \partial(e) = 1 \\ \partial(f) = 1$

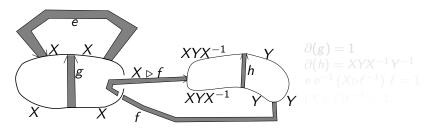
 $X, Y \in \pi_1(M^{(1)}); e, f \in \pi_2(M^{(2)}, M^{(1)}).$

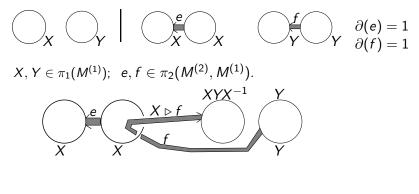
 $\begin{aligned} \partial(\mathbf{g}) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \, e^{-1} \left(X \triangleright f^{-1}\right) \, f &= 1\\ (X \triangleright f) f^{-1} &= 1. \end{aligned}$

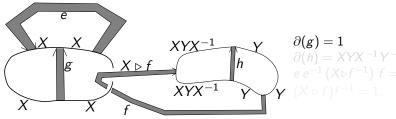


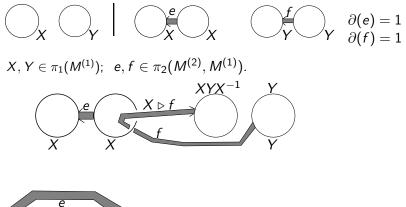
 $\begin{aligned} \partial(\mathbf{g}) &= 1\\ \partial(h) &= XYX^{-1}Y^{-1}\\ e \ e^{-1} \left(X \triangleright f^{-1}\right) \ f &= 1\\ (X \triangleright f) f^{-1} &= 1. \end{aligned}$

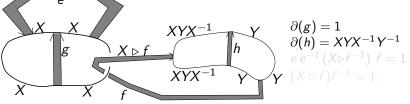


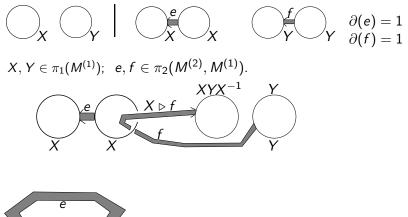


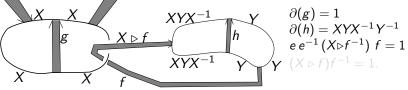


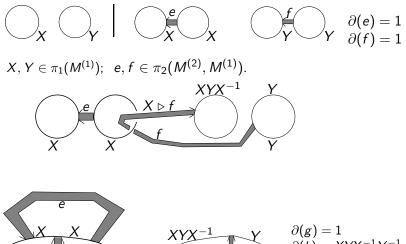


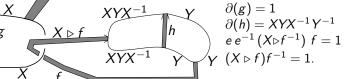












Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \left\{ e, f, g, h \right\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \to [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle$. Quotient of the free module over the algebra of Lauren polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E o \mathcal{G}, \triangleright)$ is finite and $\partial(E) = \{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{f \mapsto 1 \\ g \mapsto 1 \\ h \to [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$ Quotient of the free module over the algebra of Lauren polynomials in X and X on the generators of form

by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{e \mapsto 1 \\ f \mapsto 1 \\ g \mapsto 1}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}] \{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow \mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ \to (X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow\mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{f \mapsto 1 \\ g \mapsto 1 \\ \to (X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

$\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

 $\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G}=(E
ightarrow\mathcal{G},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\} / \langle f = X.f \rangle.$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_{\mathcal{G}}\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{\mathbf{1}_G\}$ then: $I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then: $I_{\mathcal{G}}(M) = \#\{(X, Y, f) \in G \times G \times E \mid XY = YX, f = X \triangleright f\}(\#E).$

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

Hence

$$\Pi_2(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{\substack{e \mapsto 1 \\ g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(\{X, Y\}) \mid f = X \triangleright f \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

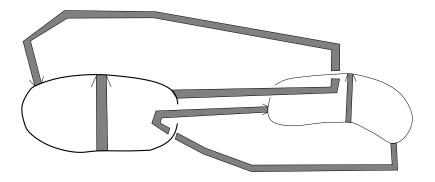
$$\pi_2(M) = \mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, g\}/ < f = X.f > .$$

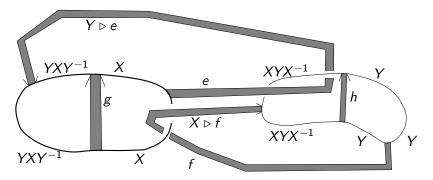
Quotient of the free module over the algebra of Laurent polynomials in X and Y, on the generators e, f, g, by the relation f = X.f.

If
$$\mathcal{G} = (E \to G, \triangleright)$$
 is finite and $\partial(E) = \{1_G\}$ then:

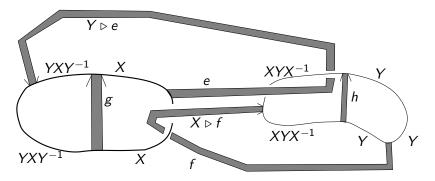
 $\begin{aligned} \partial(e) &= 1\\ \partial(f) &= 1\\ \partial(g) &= YXY^{-1}X^{-1}\\ \partial(h) &= XYX^{-1}Y^{-1}\\ (Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = \end{aligned}$

 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f =$

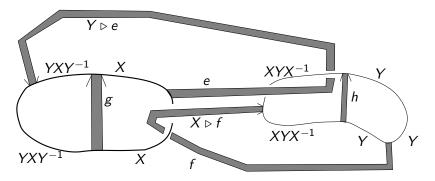




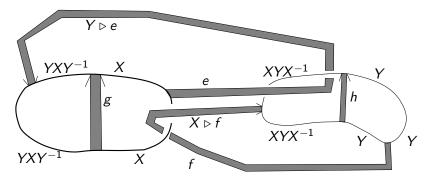
 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 0$



 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1}(X \triangleright f^{-1}) f = 0$



 $\partial(e) = 1$ $\partial(f) = 1$ $\partial(g) = YXY^{-1}X^{-1}$ $\partial(h) = XYX^{-1}Y^{-1}$ $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$



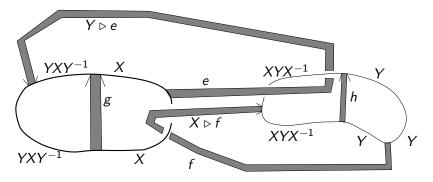
$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 0$$



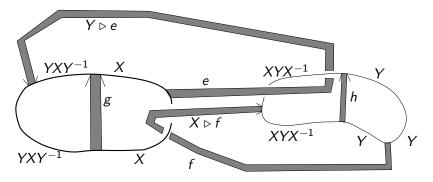
$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

 $(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$



$$\partial(e) = 1$$

$$\partial(f) = 1$$

$$\partial(g) = YXY^{-1}X^{-1}$$

$$\partial(h) = XYX^{-1}Y^{-1}$$

$$(Y \triangleright e) e^{-1} (X \triangleright f^{-1}) f = 1$$

$\Sigma' =$ Spun Hopf Link. $M = S^4 \setminus \Sigma$

Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $|\mathcal{T}^2\sqcup\mathcal{T}^2|$ above.

$\Sigma' =$ Spun Hopf Link. $M = S^4 \setminus \Sigma$ Hence

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto 1 \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $|\mathcal{T}^2\sqcup\mathcal{T}^2|$ above.

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G}=(E
ightarrow {\mathcal{G}},
ho)$ is finite and $\partial(E)=\{1_{\mathcal{G}}\}$ then:

 $l_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $|\mathcal{T}^2\sqcup\mathcal{T}^2|$ above.

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y_{\triangleright e}) e^{-1} \\ (X_{\triangleright f^{-1}}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X, Y\} | [X, Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0} \right\}.$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $|\mathcal{T}^2\sqcup\mathcal{T}^2|$ above.

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1 \rangle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \#\left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

 $I_{\mathcal{G}}$ can distinguish Σ' from $\Sigma=$ knotted $|\mathcal{T}^2\sqcup\mathcal{T}^2|$ above.

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}$$

If $\mathcal{G} = (E
ightarrow \mathcal{G}, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \#\left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{< (Y \triangleright e) - e - (X \triangleright f) + f = 0 >}$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

 $I_{\mathcal{G}}(M) = \# \left\{ (X, Y, e, f) \in G^2 \times E^2 \mid \underset{(Y \triangleright e) - e - (X \triangleright f) + f = 0}{XY = YX} \right\}.$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto [Y, X] \\ f \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \middle| \begin{array}{c} (Y \triangleright e) e^{-1} \\ (X \triangleright f^{-1}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\left\{(X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0}\right\}.$$

$$\Pi_{2}(M, M^{(1)}) = \mathcal{U}\left\langle \{e, f, g, h\} \xrightarrow{\substack{g \mapsto 1 \\ g \mapsto [Y, X] \\ h \mapsto [X, Y]}} \mathcal{F}(X, Y) \mid \begin{array}{c} (Y_{\triangleright e}) e^{-1} \\ (X_{\triangleright f^{-1}}) f \\ =1 \end{array} \right\rangle$$

 $\pi_1(M) = \langle \{X,Y\} | [X,Y] = 1
angle$, free abelian group on X and Y.

$$\pi_2(M) = \frac{\mathbb{Z}[X, X^{-1}, Y, Y^{-1}]\{e, f, m\}}{\langle (Y \triangleright e) - e - (X \triangleright f) + f = 0 \rangle}.$$

If $\mathcal{G} = (E \to G, \triangleright)$ is finite and $\partial(E) = \{1_G\}$ then:

$$I_{\mathcal{G}}(M) = \#\left\{(X, Y, e, f) \in G^2 \times E^2 \mid \frac{XY = YX,}{(Y \triangleright e) - e - (X \triangleright f) + f = 0}\right\}.$$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall $I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$

► The invariant of knotted surfaces:

 $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying $\mathcal{G}.)$

Let $\mathcal{G} = (\partial \colon E \to G)$ be a finite crossed module.

Recall $I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$

▶ The invariant of knotted surfaces:

 $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying $\mathcal{G}.$)

Let
$$\mathcal{G} = (\partial \colon E \to G)$$
 be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

 $\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G}_{\cdot})

Let
$$\mathcal{G} = (\partial \colon E \to G)$$
 be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

► The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G}_{\cdot})

Let
$$\mathcal{G} = (\partial \colon E \to G)$$
 be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G}_{\cdot})

Let
$$\mathcal{G} = (\partial \colon E \to G)$$
 be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G} .)

Let
$$\mathcal{G} = (\partial \colon E \to G)$$
 be a finite crossed module.

Recall
$$I_{\mathcal{G}}(M) = \frac{1}{\#E^{b_1(M^1)}} \# \operatorname{hom}(\Pi_2(M, M^1), \mathcal{G})$$

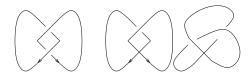
The invariant of knotted surfaces:

$$\Sigma \mapsto I_{\mathcal{G}}(S^4 \setminus \Sigma)$$

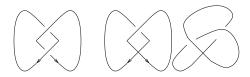
is able to separate between pairs of knotted surfaces with different knot groups. (Varying \mathcal{G} .)

Recall that Welded knots are virtual knot diagrams like:

Recall that Welded knots are virtual knot diagrams like:

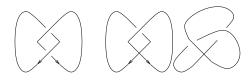


Recall that Welded knots are virtual knot diagrams like:



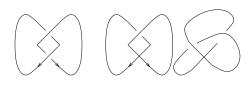
Modulo relations:

Recall that Welded knots are virtual knot diagrams like:



Modulo relations:

Recall that Welded knots are virtual knot diagrams like:



wiii ≅ Modulo relations: $\begin{array}{|c|c|c|c|c|} & \operatorname{RI}(a) & \operatorname{RI}(b) & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

▶ Recall Shin Satoh's "tube-map" *Tube*: {Welded links} → {Knotted Tori in S^4 }

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

Recall Shin Satoh's "tube-map"

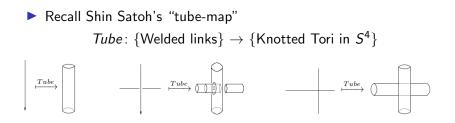
Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

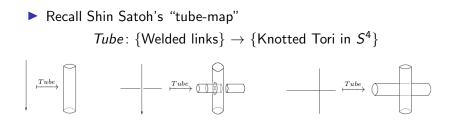
Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }





Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 } rem: Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$

The welded knot invariant

 $K\mapsto I_{\mathcal{G}}(S^4\setminus Tube(K))$

is computed from a biquandle with underlying set G imes A:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 } heorem: Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

 $K\mapsto l_{\mathcal{G}}(S^4\setminus Tube(K))$

is computed from a biquandle with underlying set G imes A:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{\mathbf{1}_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$

is computed from a biquandle with underlying set G imes A:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

Recall Shin Satoh's "tube-map"

Tube: {Welded links} \rightarrow {Knotted Tori in S^4 }

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$

is computed from a biquandle with underlying set G imes A:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded \ links\} \rightarrow \{Knotted \ Tori \ in \ S^4\}$

Theorem: Suppose $\mathcal{G} = (A \to G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$

is computed from a biquandle with underlying set G imes A:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$

is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

 $K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$

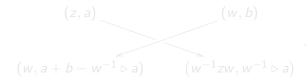
is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$ Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:



So A is an abelian G-module, $z, w \in G$, $a, b \in A$ Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

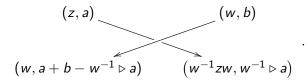
is computed from a biquandle with underlying set $G \times A$:

So A is an abelian G-module, $z, w \in G$, $a, b \in A$ Proof essentially in:

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:



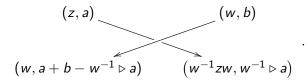
So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

Biquandles and $I_{\mathcal{G}}$

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:



So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

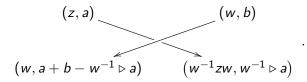
JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Comp. Math. 2008

Biquandles and $I_{\mathcal{G}}$

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

is computed from a biquandle with underlying set $G \times A$:



So A is an abelian G-module, $z, w \in G$, $a, b \in A$.

Proof essentially in:

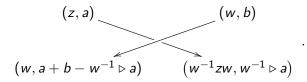
JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Comp. Math. 2008

Biquandles and $I_{\mathcal{G}}$

▶ Recall Shin Satoh's "tube-map" $Tube: \{Welded links\} \rightarrow \{Knotted Tori in S^4\}$ **Theorem:** Suppose $\mathcal{G} = (A \rightarrow G, \triangleright)$ is finite and $\partial(A) = \{1_G\}$. The welded knot invariant

$$K \mapsto I_{\mathcal{G}}(S^4 \setminus Tube(K))$$

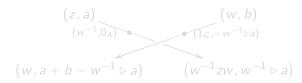
is computed from a biquandle with underlying set $G \times A$:



So A is an abelian G-module, $z, w \in G$, $a, b \in A$. Proof essentially in:

JFM., Kauffman L.H.: Invariants of Welded Virtual Knots Via Crossed Module Invariants of Knotted Surfaces, Comp. Math. 2008

Consider 'bikoid' below (A an abelian G-module):

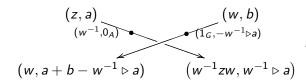


Arrows in 'wreath product' groupoid $((G \ltimes A)//(G \ltimes A))^n \rtimes S_n$.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

See:

Consider 'bikoid' below (A an abelian G-module):

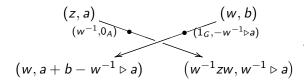


Arrows in 'wreath product' groupoid $((G \ltimes A)//(G \ltimes A))^n \rtimes S_n$.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

See:

Consider 'bikoid' below (A an abelian G-module):

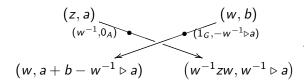


Arrows in 'wreath product' groupoid $((G \ltimes A)//(G \ltimes A))^n \rtimes S_n$.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

See:

Consider 'bikoid' below (A an abelian G-module):



Arrows in 'wreath product' groupoid $((G \ltimes A)//(G \ltimes A))^n \rtimes S_n$.

Inclusion of peripheral system information interpreted in terms of Aharonov-Bohm like effects for loop-particles moving in topological (3+1)-dimensional Higher Gauge Theory.

See:

Theorem

There is a representation of the Loop Braid Group LB_n on $Aut(\mathcal{M}_n)$.

Here

$$\mathcal{M}_n = \Pi_2 \Big(\vee_{i=1}^2 (S^2 \vee S^1), \vee_{i=1}^2 S^1 \Big)$$

Formulae are dual to those of the biquandle.

See

Theorem

There is a representation of the Loop Braid Group LB_n on $Aut(\mathcal{M}_n)$.

Here

$$\mathcal{M}_n = \Pi_2 \Big(\vee_{i=1}^2 (S^2 \vee S^1), \vee_{i=1}^2 S^1 \Big)$$

Formulae are dual to those of the biquandle.

See

Theorem

There is a representation of the Loop Braid Group LB_n on $Aut(\mathcal{M}_n)$.

Here

$$\mathcal{M}_n = \Pi_2 \Big(\vee_{i=1}^2 (S^2 \vee S^1), \vee_{i=1}^2 S^1 \Big)$$

Formulae are dual to those of the biquandle.

Domioni

Damiani C, JFM , Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

Theorem

There is a representation of the Loop Braid Group LB_n on $Aut(\mathcal{M}_n)$.

Here

$$\mathcal{M}_{\textit{n}} = \Pi_2 \Big(\vee_{i=1}^2 \left(S^2 \vee S^1 \right), \vee_{i=1}^2 S^1 \Big)$$

Formulae are dual to those of the biquandle.

See

Theorem

There is a representation of the Loop Braid Group LB_n on $Aut(\mathcal{M}_n)$.

Here

$$\mathcal{M}_{\textit{n}} = \Pi_2 \Big(\vee_{i=1}^2 \left(S^2 \vee S^1 \right), \vee_{i=1}^2 S^1 \Big)$$

Formulae are dual to those of the biquandle.

See

Damiani C, JFM , Martin P: On a canonical lift of Artin's representation to loop braid groups. arXiv:1912.11898.

THANKS!